

Total No. of Questions - [3]

Total No. of Printed Pages: [IV]

| G.R. No. |  |
|----------|--|
|          |  |

PAPER CODE V123-204 A(REG)

## MAY 2023 (INSEM+ ENDSEM) EXAM

F.Y. B. TECH. (SEMESTER - II)

COURSE NAME: ENGINEERING PHYSICS

**COURSE CODE: ES10204A** 

(PATTERN 2020)

Time: [2Hr]

[Max. Marks: 60]

- (\*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data where ever required

| Question | Question Description                                                                                                                                                                                                                                                                                                                                                      | Marks | CO     | Blooms Taxonomy |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-----------------|
| No.      |                                                                                                                                                                                                                                                                                                                                                                           |       | mapped | Level           |
| Q.1      | Solve the following  i) A vibration represented by a cosine function is a  (a) Random vibration (b) Aperiodic vibration (c) Simple Harmonic vibration (d) combination of random and periodic vibration                                                                                                                                                                    | [2]   | [1]    | Remember        |
|          | ii) Starting from the expression for displacement for undamped oscillations $u(t) = Acos\omega_n t + Bsin\omega_n t$ , the velocity $v(t)$ is given by  (a) $-B\omega_n sin\omega_n t + A\omega_n cos\omega_n t$ (b) $-A\omega_n cos\omega_n t + B\omega_n sin\omega_n t$ (c) $-Asin\omega_n t + Bcos\omega_n t$ (d) $-A\omega_n sin\omega_n t + B\omega_n cos\omega_n t$ | [2]   | [1]    | Understand      |
|          | iii) In viscously damped oscillations, which of the following statement is true?  (a) Velocity is proportional to the displacement (b) Damping is proportional to the velocity (c) There is no dissipation of energy (d) Amplitude remains constant                                                                                                                       | [2]   | [1]    | Remember        |
|          | iv) For a critically viscously damped free oscillation, the damped time period is (a) Finite and small (b) finite and large (c) infinite (d) indeterminate                                                                                                                                                                                                                | [2]   | [1]    | Understand      |

| C C 1 homorio                                                                                                                                                                         | [2] | [1] | Understand |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|------------|
| v) The complementary solution of forced harmonic oscillations with viscous damping corresponds to (a) Resonant state (b) The steady state (c) Undamped free                           | [2] | [1] | Onderstand |
| oscillation (d) damped free oscillation                                                                                                                                               |     |     |            |
| vi) For an underdamped free oscillation (viscously damped), which of the following statements is false  (a) $\omega_D$ is finite.                                                     | [2] | [1] | Analysis   |
| (b) $T_D$ is finite.                                                                                                                                                                  |     | İ   |            |
| <ul> <li>(c) There is oscillatory behaviour with the amplitude decreasing exponentially</li> <li>(d) ζ &gt; 1</li> </ul>                                                              |     |     |            |
| vii) The logarithmic decrement for a viscously damped oscillation, if the amplitudes for 2 <sup>nd</sup> and 4 <sup>th</sup> oscillations are 10 cm and 2cm, respectively, is         | [2] | [1] | Analysis   |
| (a) e <sup>0.8</sup> (b) 0.008 (c) 0.08 (d) 0.80                                                                                                                                      |     |     |            |
| viii) The displacement of a simple harmonic motion is represented by the equation, $u(t) = (3.1 \text{ cm}) \sin(2.57t - 0.04)$ . The angular frequency and initial displacement are: | [2] | [1] | Analysis   |
| (a) 2.75 rad/s, 0.0022cm<br>(b) 2.57 rad/s, 0.0022cm<br>(c) 2.75rad/s, -0.0022cm<br>(d) 2.57rad/s, -0.124cm                                                                           |     |     |            |
| ix) In an n-type semiconductor, with decreased doping                                                                                                                                 | [2] | [2] | Understand |
| concentrations, the Fermi                                                                                                                                                             |     |     |            |
| level                                                                                                                                                                                 |     |     |            |
| (a) shifts towards the conduction band                                                                                                                                                | 1   |     |            |
| (b) shifts towards the valence band                                                                                                                                                   |     | ,   |            |
| (c) shifts towards the centre (d) none of the options                                                                                                                                 |     |     |            |
| x) The charge on a p-type semiconductor sample is                                                                                                                                     | [2] | [2] | Understand |
| (a) positive (b) negative (c) neutral (d) none of these                                                                                                                               |     |     |            |
| xi) Which of these statements regarding a p-n junction diod                                                                                                                           |     |     |            |
| false?                                                                                                                                                                                | [2] | [2] | Understand |
| (a) The depletion region is depleted of free charge carriers                                                                                                                          | 1   |     |            |
| (b) The depletion layer consists of immobile positive charges on the n-side and immobile negative charges on the p side                                                               |     |     | ·          |
| (c) The depletion layer has no mobile electrons and holes (d) The depletion layer has free charges both holes and electrons                                                           |     |     |            |
| xii) For p-type GaAs with a band gap of 1.424eV, if $E_{Fo}$ =0.5eV, then $E_{Fp}$ - $E_v$ is equal to                                                                                | [2] | [2] | Analysis   |

|                                                                                                                                                                                                                                                                                                                                                                                                                      | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) 0.924eV (b) 0.212eV (c) 1.012eV (d) 1.212eV  xiii) For two samples A and B of n-type semiconductor having the same intrinsic carrier concentration, the doping concentration of donor impurities is 1×10 <sup>20</sup> m <sup>-3</sup> and 3×10 <sup>20</sup> m <sup>-3</sup> , respectively. If the hole concentration in sample A is                                                                           | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $9\times10^{12}$ m <sup>-3</sup> , then the hole concentration in sample B is  (a) $3\times10^{12}$ m <sup>-3</sup> (b) $1\times10^{12}$ m <sup>-3</sup> (c) $27\times10^{12}$ m <sup>-3</sup> (d) $9\times10^{12}$ m  xiv) If the value of Fermi Dirac distribution function is 0.95 for T = 300K and given Boltzmann's constant $k = 8.6 \times 10^{-5}$ eV/K, then the value of E-E <sub>F</sub> is  (a) 0.076 eV | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>(b) 0.076 J</li> <li>(c) -0.076 eV</li> <li>(d) 0.05 eV</li> <li>xv) The value of gamma integral Γ (1/2) is √π then the value of Γ (9/2) is</li> <li>(a) (9×√π)/2</li> <li>(b) (945×√π)/32</li> <li>(c) (15×√π)/8</li> <li>(d) (105×√π)/16</li> </ul>                                                                                                                                                       | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Solve any three out of four  (a) Explain in brief what is meant by dispersion. If RMS material dispersion and RMS intermodal dispersion are 15 ns and 8 ns respectively, what will be its total dispersion and maximum speed at which digital bits can be sent.                                                                                                                                                      | [ <b>15</b> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| fractional refractive index is 0.001. Calculate numerical aperture, what is the max data speed that can be achieved for a length of 20 Km if we consider only RMS intermodal dispersion.                                                                                                                                                                                                                             | [5]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| factors responsible for attenuation.                                                                                                                                                                                                                                                                                                                                                                                 | [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Understand<br>Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>(b) 0.212eV</li> <li>(c) 1.012eV</li> <li>(d) 1.212eV</li> <li>xiii) For two samples A and B of n-type semiconductor having the same intrinsic carrier concentration, the doping concentration of donor impurities is 1×10<sup>20</sup> m<sup>-3</sup> and 3×10<sup>20</sup> m<sup>-3</sup>, respectively. If the hole concentration in sample A is 9×10<sup>12</sup> m<sup>-3</sup>, then the hole concentration in sample B is <ul> <li>(a) 3×10<sup>12</sup> m<sup>-3</sup> (b) 1×10<sup>12</sup> m<sup>-3</sup> (c) 27×10<sup>12</sup> m<sup>-3</sup> (d) 9×10<sup>12</sup> m<sup>-3</sup></li> </ul> </li> <li>xiv) If the value of Fermi Dirac distribution function is 0.95 for T = 300K and given Boltzmann's constant k = 8.6 × 10<sup>-5</sup> eV/K, then the value of E-E<sub>F</sub> is <ul> <li>(a) 0.076 eV</li> <li>(b) 0.076 J</li> <li>(c) -0.076 eV</li> <li>(d) 0.05 eV</li> </ul> </li> <li>xv) The value of gamma integral Γ (1/2) is √π then the value of Γ (9/2) is <ul> <li>(a) (9×√π)/2</li> <li>(b) (945×√π)/32</li> <li>(c) (15×√π)/8</li> <li>(d) (105×√π)/16</li> </ul> </li> <li>Solve any three out of four <ul> <li>(a) Explain in brief what is meant by dispersion. If RMS material dispersion and RMS intermodal dispersion are 15 ns and 8 ns respectively, what will be its total dispersion and maximum speed at which digital bits can be sent.</li> <li>(b) If optical fibre has a core refractive index of 1.49 with fractional refractive index is 0.001. Calculate numerical aperture, what is the max data speed that can be achieved for a length of 20 Km if we consider only RMS intermodal dispersion.</li> <li>(c) What is attenuation in optical fibre. Explain in detail factors responsible for attenuation.</li> </ul> </li> <li>(d) A rules with a nower of 0.02 mW is launched into an optical fibre in the sum of the property of the prope</li></ul> | <ul> <li>(b) 0.212eV</li> <li>(c) 1.012eV</li> <li>(d) 1.212eV</li> <li>(d) 1.212eV</li> <li>(e) 1.012eV</li> <li>(d) 1.212eV</li> <li>(e) 1.012eV</li> <li>(d) 1.212eV</li> <li>(e) 1.012eV</li> <li>(d) 1.212eV</li> <li>(e) 1.012eV</li> <li>(f) 1.212eV</li> <li>(g) 1.212eV</li> <li>(h) 1.212eV</li> <li>(ii) 1.200 m<sup>-3</sup> and 3×10<sup>20</sup> m<sup>-3</sup> and 3×10<sup>20</sup> m<sup>-3</sup>, respectively. If the hole concentration in sample A is 9×10<sup>12</sup> m<sup>-3</sup>, then the hole concentration in sample B is (a) 3×10<sup>12</sup> m<sup>-3</sup> (b) 1×10<sup>12</sup> m<sup>-3</sup> (c) 27×10<sup>12</sup> m<sup>-3</sup> (d) 9×10<sup>12</sup> m</li> <li>(iii) 1.2 m<sup>-3</sup> (b) 1×10<sup>12</sup> m<sup>-3</sup> (c) 27×10<sup>12</sup> m<sup>-3</sup> (d) 9×10<sup>12</sup> m</li> <li>(iv) 1.2 fthe value of Fermi Dirac distribution function is 0.95 for T = 300K and given Boltzmann's constant k = 8.6 ×</li> <li>(iv) 1.2 eV/K, then the value of E-E<sub>F</sub> is</li> <li>(a) 0.076 eV</li> <li>(b) 0.076 J</li> <li>(c) -0.076 eV</li> <li>(d) 0.05 eV</li> <li>(e) (15×√π)/32</li> <li>(f) (15×√π)/16</li> <li>(g) (15×√π)/16</li> <li>(h) (945×√π)/16</li> <li>(iv) (15×√π)/16</li> <li>(iv) (15√π)/16</li> <li>(iv) (15√π)/16</li> <li>(iv) (15√m)/16</li> <li>(iv) (15√m)/1</li></ul> | <ul> <li>(b) 0.212eV</li> <li>(c) 1.012eV</li> <li>(d) 1.212eV</li> <li>xiii) For two samples A and B of n-type semiconductor having the same intrinsic carrier concentration, the doping concentration of donor impurities is 1×10<sup>20</sup> m<sup>3</sup> and 3×10<sup>20</sup> m<sup>3</sup>, respectively. If the hole concentration in sample A is 9×10<sup>12</sup> m<sup>3</sup>, then the hole concentration in sample B is <ul> <li>(a) 3×10<sup>12</sup> m<sup>3</sup> (b) 1×10<sup>12</sup> m<sup>3</sup> (c) 27×10<sup>12</sup> m<sup>3</sup> (d) 9×10<sup>12</sup> m</li> </ul> </li> <li>xiv) If the value of Fermi Dirac distribution function is 0.95 for T = 300K and given Boltzmann's constant k = 8.6 ×</li> <li>10<sup>-5</sup> eV/K, then the value of E-E<sub>F</sub> is</li> <li>(a) 0.076 eV</li> <li>(b) 0.076 J</li> <li>(c) -0.076 eV</li> <li>(d) 0.05 eV</li> <li>xv) The value of gamma integral Γ (1/2) is √π then the value of Γ (9/2) is</li> <li>(a) (9×√π)/2</li> <li>(b) (945×√π)/32</li> <li>(c) (15×√π)/8</li> <li>(d) (105×√π)/16</li> </ul> <li>Solve any three out of four <ul> <li>(a) Explain in brief what is meant by dispersion. If RMS material dispersion and RMS intermodal dispersion are 15 ns and 8 ns respectively, what will be its total dispersion and maximum speed at which digital bits can be sent.</li> <li>(b) If optical fibre has a core refractive index of 1.49 with fractional refractive index is 0.001. Calculate numerical aperture, what is the max data speed that can be achieved for a length of 20 Km if we consider only RMS intermodal dispersion.</li> <li>(c) What is attenuation in optical fibre. Explain in detail factors responsible for attenuation.</li> <li>(b) A rules with a power of 0.02 mW is launched into an optical fibre and only an optical fibre.</li> </ul></li> |

|     | the distance after which the power drops to 0.0002mW, which is detection light of the light sensor used to detect the signal at the end of this unbroken fibre. If 10 repeaters are used to extend the distance over which the signal can be transmitted then what is the total distance achieved. |      |     |            |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|------------|
| Q.3 | Solve any three out of four                                                                                                                                                                                                                                                                        | [15] |     |            |
|     | (a) What is meant by Rayleigh range, drive its relation with the help of a neat labeled diagram.                                                                                                                                                                                                   | [5]  | [4] | Understand |
|     | (b) An Argon Laser has a wavelength of 514 nm with a width of gain curve about 4 GHz. The length of the optical cavity is 20 cm. Calculate the following:                                                                                                                                          | [5]  | [4] | Analysis   |
|     | <ol> <li>mode number m</li> <li>peak frequency</li> <li>width of the gain curve in terms of wavelength (Δλ)</li> <li>mode separation frequency v<sub>ms</sub></li> <li>how many modes are allowed in the width of the gain curve.</li> </ol>                                                       |      |     |            |
|     | (c) Explain the phenomena of absorption, spontaneous emission and stimulated emission of light by matter with the help of neat labelled diagrams.                                                                                                                                                  | [5]  | [4] | Understand |
|     | (d)With a neat labelled diagram explain the principle, construction and working of Single Hetero Junction Laser Diode.                                                                                                                                                                             | [5]  | [4] | Understand |

•