G.R./PRN	
No.	

PAPER CODE V123-2098 (REG)

[Max. Marks: 60]

MAY 2023 (INSEM+ ENDSEM) EXAM

F.Y. B. TECH. (SEMESTER - II)

COURSE NAME: MATERIALS SCIENCE

COURSE CODE: ES10209B

(PATTERN 2020)

Time: [2Hr]
(*) Instructions to candidates:

1) Figures to the right indicate full marks.

2) Use of scientific calculator is allowed

3) Use suitable data where ever required

Question	Question Description	Marks	CO	Blooms
No.			mapped	Taxonomy
	1) Match the C.H.			Level
Q.1	i) Match the following:	[2]	1	U
	1 Tricalcium silicate e 7 days for setting	i		
	2 Dicalcium silicate f 28 days for setting			
 	3 Tricalcium aluminate g 1 day for setting			
	a) 1-f,2-e,3-g b) 1-e,2-f,3-g c) 1-g,2-f,3-e d) 1-g, 2-e,3-f			
	ii) The selection of an appropriate material and its subsequent	[2]	1	U
	conversion into a useful product with desired shape and properties			
	follows which sequence?			
	a) Material selection process selectionproduction			
	evaluation and possible redesign or modification			
	b) Design material selection process selectionproduction			
	evaluation and possible redesign or modification			
	c) Design process selectionproduction evaluation and possible redesign or modification			
	d)Design production evaluation and possible redesign or			
	modification		1	-
	iii) Complete the following reaction:	[2]	1	. 1
	$C_4AF+7H_2O \rightarrow C_3A.6H_2O + +$	(-,	•	A
	a) CF.H ₂ O + 880 kJ/kg b) CF.H ₂ O + 420 kJ/kg	}	ł	
	c) $2CF.H_2O + 420 \text{ kJ/kg}$ d) $CF.H_2O + 520 \text{ kJ/kg}$	[0]	,	_
	iv) General composition of fireclay bricks: Al ₂ O ₃ ,SiO ₂ and	[2]	1	R
	remaining part consists of oxides in the clay like K2O, FeO,			j
į	CaO, MgO, etc. The percentage of SiO ₂ in this brick is	į	ľ	ŀ
	a) 35% to 55% b) 65% to 85%			

	c) 40% to 55% d)	75% t	o 95%			,
w wh:	ch of the following statemen	ts are	correct?			
	th metal is an example of all		COLLEGER	[2]	1	U
	eglass is a ceramic material	- ,		1		
iii) Fe2	O ₄ is an example of magnet	ic cera	amics	ļ		
iv) Fe,	Co, Ni are magnetic metals			1		
•	a) Only i b) i				i	
		above		1	İ	
vi) He	at treatable stainless steel	is use	d in and	(0)		-
magne	tic non-heat treatable stain	ess ste	el is used in	[2]	1	R
	gical instruments, automobil	a nort				
	omobile parts, surgical instr				j	
	mers, surgical instruments				İ	
	tal instruments, dies for dra	wing v	rires			
	tch the following :	•				
				[2]	1	ប
1	Shape-memory alloy	е	PZT	.⊸,	_	-
2	Piezoelectric Materials	f	NiTi			
3	Magnetostrictive Materials	g	silicon carbide	ľ		•
4	Ceramics	h	Terfenol-D	1	1	
				l		
	2-f,3-g,4-h b)	1-g, 2-	h,3-e,4-f			
c) 1-f,	2-h, 3-g,4-e d)	1-f,2-€	,3-h,4-g		1	
0	mmon MB flyid and stanto					_
	mmon MR fluid surfactants	are:		[2]	1	R
i)Oleic ii)Tetra	aciu amethylammonium hydroxid	e			ĺ	
	ic acid	. •				
	lecithin					
	i,ii,iii and iv	b) i.ii	i and iv			
c	i, ii and iii	d	ii. iii and in		·	
ix) Cal	culate Molecular weight of P	olyace	tylene (Degree of	(0)		
polyme	erization - 1100)		6-55 01	[2]	2	A
a) 275	00				,	
ь) 308	00					
c) 297	00					
d) 286						
•	ch the following					
	Bifunctional monomers	e	Sorbitol	[2]	_	
1 1		_ 1	SUPPLIED	[-]	2	U
		f		[-]	2	บ
2	Trifunctional monomers:	f	Glycerol	[-]	2	υ
2		g	Glycerol Acrylonitrile	[-]	2	U
2	Trifunctional monomers:		Glycerol Acrylonitrile	[-]	2	υ
3 7	Trifunctional monomers: Tetrafunctional monomers:	g	Glycerol	[-]	2	υ
2 3 a) 1-e,	Trifunctional monomers: Tetrafunctional monomers: 2-f, 3-g, 2-h	g	Glycerol Acrylonitrile	(-)	Z	υ
2 3 a) 1-e, b) 1-g,	Trifunctional monomers: Tetrafunctional monomers: 2-f, 3-g, 2-h 2-f, 3-e, 3-h	g	Glycerol Acrylonitrile	(-)	Z	υ
a) 1-e, b) 1-g, c) 1-g,	Trifunctional monomers: Tetrafunctional monomers: 2-f, 3-g, 2-h 2-f, 3-e, 3-h 2-e, 3-f, 2-h	g	Glycerol Acrylonitrile	(-)	z	ប
2 3 1-e, b) 1-g, c) 1-g,	Trifunctional monomers: Tetrafunctional monomers: 2-f, 3-g, 2-h 2-f, 3-e, 3-h	g	Glycerol Acrylonitrile	(-)	z	ប
a) 1-e, b) 1-g, c) 1-g, d) 1-g,	Trifunctional monomers: Tetrafunctional monomers: 2-f, 3-g, 2-h 2-f, 3-e, 3-h 2-e, 3-f, 2-h 2-f, 3-e, 1-h	g h	Glycerol Acrylonitrile Hexamethylene diamine	(-)	z	บ
a) 1-e, b) 1-g, c) 1-g, d) 1-g,	Trifunctional monomers: Tetrafunctional monomers: 2-f, 3-g, 2-h 2-f, 3-e, 3-h 2-e, 3-f, 2-h 2-f, 3-e, 1-h ich of the following statements	g h	Glycerol Acrylonitrile Hexamethylene diamini	(-)	z	υ
2 3 1-e, b) 1-e, c) 1-g, d) 1-g, xi) Wh	Trifunctional monomers: Tetrafunctional monomers: 2-f, 3-g, 2-h 2-f, 3-e, 3-h 2-e, 3-f, 2-h 2-f, 3-e, 1-h ich of the following statemer	g h	Glycerol Acrylonitrile Hexamethylene diamine			
a) 1-e, b) 1-g, c) 1-g, d) 1-g, xi) Wh i) A po	Trifunctional monomers: Tetrafunctional monomers: 2-f, 3-g, 2-h 2-f, 3-e, 3-h 2-e, 3-f, 2-h 2-f, 3-e, 1-h ich of the following statement olymer shows appreciable of shows isolated double bonds:	g h	Glycerol Acrylonitrile Hexamethylene diamine not correct?	[2]	2	υ
a) 1-e, b) 1-g, c) 1-g, d) 1-g, xi) Wh ii) A po	Trifunctional monomers: Tetrafunctional monomers: 2-f, 3-g, 2-h 2-f, 3-e, 3-h 2-e, 3-f, 2-h 2-f, 3-e, 1-h ich of the following statemer olymer shows appreciable of shows isolated double bordingically.	g h	Glycerol Acrylonitrile Hexamethylene diamine not correct? tivity if, the polymer ighout its chain			
a) 1-e, b) 1-g, c) 1-g, d) 1-g, xi) Wh i) A pochain	Trifunctional monomers: Tetrafunctional monomers: 2-f, 3-g, 2-h 2-f, 3-e, 3-h 2-e, 3-f, 2-h 2-f, 3-e, 1-h ich of the following statement olymer shows appreciable of shows isolated double bonds:	g h	Glycerol Acrylonitrile Hexamethylene diamine not correct? tivity if, the polymer ighout its chain			

. .

	iii) Presence of heteroatomic system enhances conductivity of	f	1	T
ł	polymer	-	1	
į	iv) Presence of saturated cyclic rings in the chain with	1		
	continuous resonance enhances conductivity.		1	,,
	a) i & ii b) iii & iv c) ii & iv d) i, & iv		ł	1 .
	xii) Match the following	(0)	2	
	1 Smectic e sensitive to the environment	[2]		U
	2 Nematic f parallel and lateral arrangement	-		
1		-		
1	Cholesteric g only parallel arrangement Pitch h modified nematic	4		1
ŀ		4		
	a) 1-e, 2-f, 3-g, 4-h b) 1-g, 2-f, 3-e, 4-h	ł		
	c) 1-f, 2-g, 3-h, 4-e d) 1-g, 2-f, 3-e, 4-h			
	xiii) are used for air-craft structures. a) Electroluminescent polymers	[2]	2	U
1	b) Fiber reinforced polymer composites			
1	c) Liquid Crystal Polymers			
	d) Conducting Polymers			
İ	xiv) Match the following	[2]	2	U
1	construction industry e Polycarbonate	- 1		
	electronic industry f Acrylonitrile/butadiene/st	7	Ì	
1	Mechanical industry g Poly Methyl Methacryl			
	h Polystyrene	4	İ	
	i PVC	1		[.
İ	a) 1- h & i, 2-g & h, 3-e & f b) 1- h & i, 2-e & f, 3-g & h	7		
·	c) 1- e & f, 2-g & h, 3-h & i d) 1-g & h, 2-h & i, 3-e & f	İ		
ŀ	xv) Which of the following statements are applicable for	[2]	2	
[Thermonlastic Polymers?	(-)		Ŭ
	i) These polymers are soft weak and less brittle.		1	
	ii) These can be moulded and remoulded several times.			
	1 :::) Proper based thermonlastic polymers are used as adhesives			1
	iv) They are formed by addition polymerization hence			1
1	insoluble in organic solvents. b) only I			1
ĺ	a) i & ii b) only i c) i, ii & iii d) i, ii, iii & iv	j		
Q2	Salve any three out of four			
-	a) Identify types of exide films formed on the surface of the	[5]	3	U&A
	following motels and write their oxidation reactions. (1)		ļ	
	Onding (ii) Zing (iii) Platinum (iv) Molyodenum (v) Nickel.			
i	like the reactions of oxygen absorption mechanism	[5]	3	U & A
	I	-		
	for following conditions. Another Steel Flate, Cathodic and Layer and Electrolyte: Moisture. (Write anodic, cathodic and			
			1	ĺ
	2) Predict the reactions of following coating metals during			l
	l • • • • • · · · ·			
	work of the full ciliar furife reactions at anoue and cautout)	1		l . [
	(i) Chromium (ii) Silver (white of corrosion depending on the	[5]	3	U & A
	following factors.	(~)		U OS A
	i) Purity of metal			
	ii) Physical state of metal			l
	iii) Temperature	1		
	iv) Moisture	i		
		1		
	v) pH 3			

	d) Predict the most appropriate and economical corrosion	[5]	3	U & A
	protection method for following examples.	}		
	i) Buried steel pipelines, Buried cables, Ship hull			
	ii) Open water box coolers, Water tanks, Buried water or gas pipeline			
	iii) containers used for storing foods, ghee, oils, pickles, medicines etc.			
	iv) For getting decorative and protective surface against corrosion			
	v) Hydraulic compressors, pressure vessels, pumps, Shock absorbers etc.			
Q.3	Solve any three out of four	-	 	
	a) What are the possible electronic transitions involved in the	[5]	4	U & A
	following molecules when they are exposed to UV-Visible radiations?			0 % A
	i) Naphthalene ii) Ethane iii) Ethanol iv) Acetaldehyde v) Pyridine			
	b) Calculate number of fundamental modes of vibrations in	(5)	4	U & A
	the following molecules	` .	,	OGA
	i) Carbon dioxide ii) Hydrochloric acid iii) Ammonia iv) Methanol v) Cyclohexane			
	c) Determine the Miller Indices of simple cubic unit cell plane	[5]	4	
	with intercepts (1, 1, 1), $(\infty, 1/2, \infty)$ with the help of figures.	ری	4	U & A
	d) i) Acetamide absorbs at 1660 cm-1 whereas benzaldehyde	(5)		
	absorbs at 1745 cm ⁻¹	[5]	4	R & U
	ii) Differentiate between Scanning Electron Microscopy and			
	Transmission electron microscopy.(Any three points)			

Blooms Taxonomy Levels Abbreviations:

R: Remembering U: Understanding

A: Applying

R & U: Remembering & Understanding U & A: Understanding & Applying