Total No. of Questions - [4]

G.R./PRN	
No.	

Total No. of Printed Pages: 4

PAPER	U123-201A(RE)
CODE	0123 22110

May 2023(INSEM+ ENDSEM) EXAM F.Y. B. TECH. (SEMESTER - II) COURSE NAME: LINEAR ALGEBRA COURSE CODE: ES10201A (PATTERN 2020)

Time: [2Hr]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data where ever required

Questi	Question Description	Marks	CO	Blooms
on No.			map	Тахопоту
			ped	Level
Q.1	i) The system of equations $2x + 3y = 1$, $x + y = 3$ has	[2]	CO1	Understan
ļ	A] One free parameter solution B] No solution			d
7-11-7	C] Two free parameter solution D] Unique solution			
	ii]Let A be 3 by 3 orthogonal matrix then Rank of matrix A is	[2]	CO1	Understan d
	A] Rank A = 1 B] Rank A = 2			
	C] Rank A = 3 D] Rank A = 4			
	iii)Rank of the matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 6 & 8 \\ 6 & 9 & 12 \end{bmatrix}$ is	[2]	CO1	Understan d
	l6 9 12J			
	A] Rank $A = 1$ B] Rank $A = 2$			
	C] Rank A = 3 D] Rank A = 4			
·	iv) The homogeneous system of linear equations $2x+3y = 0$, $8x+13y=0$ has	[2]	CO1	Understan d
Ī	A] Only trivial solution B] Non trivial			•
	solutions	1		
j	C] No solutions D] None of the above			1
	v)Let A be the Nonsingular matrix of order 'n' then rank of A is	[2]	CO1	Understan d
	A] Less than n B] greater than n	ĺ	Ì	
	C] Equal to n D] None of above			

	vi) Which of the following is not a subspace of the vector Space $V=\mathbb{R}^3$	[2	j C	CO2 Understa	an
	A] W= { $(x, x, x) x \in \mathbb{R}$ } B] W= { $(0,0,0)$ } C} W= { $(x, 3x, 0) x \in \mathbb{R}$ } D] W= { $(x, 1, x) x \in \mathbb{R}$ }				
	vii) Set of vectors $S = \left\{ \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right\}$ is	[2]	C	CO2 Understa	n
	 A] S is Linearly Independent but does not span R³ B] S Linearly Independent and span R³ C] S is Linearly dependent but span R³ D] S is Linearly dependent and does not span R³ 				
	viii) Row space Basis of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$ are	[2]	cc	O2 Understar	ı
	A) $B = \{[1 \ 2 \ 3]\}, [0 \ 0 \ 0], [0 \ 0 \ 1]$ B) $B = \{[1 \ 2 \ 3]\}, [0 \ 0 \ 1]$ C) $B = \{[1 \ 2 \ 3]\}, [2 \ 4 \ 6], [3 \ 6 \ 10]$ D) $B = \{[1 \ 2 \ 3]\}$				
	ix) Column space Basis of the matrix $A = \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & -1 \\ 1 & -1 & -1 \end{bmatrix}$	[2]	CO	Understan d	
	are $A] B = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\-1 \end{bmatrix} \right\} $ $B] B = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\-1\\-1 \end{bmatrix} \right\}$				
	C] $B = \left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} -1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\-1\\-1 \end{bmatrix} \right\}$ D] $B = \left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$	101	CO2	2 Remember	
	x) Dimensions of vector space of all 5 by 5 Skew symmetric matrices are	[2]	002	Z Kemember	
	A] 5 B] 10 C] 15 D] 25 xi) If A: $\mathbb{R}^3 \to \mathbb{R}^3$ is singular transformation with rank of	[2]	соз	Apply	
	the matrix two then Nullity of Linear Transform is A] Nullity of A = 0 B] Nullity of A = 1 C] Nullity of A = 2 D] Nullity of A = 3				
}	xii) If $A : \mathbb{R}^3 \to \mathbb{R}^3$ Orthogonal transformation, then Dimensions of Kernel A are	[2]	CO3	Understan d	
1	A] $Dim Ker A = 0$ B] $Dim Ker A = 1$ C] $Dim Ker A = 2$ D] $Dim Ker A = 3$				

xiii)If A: R ² → R ² is regular transformation, then Dimension of Image A are A] Dim Image A = 0 B] Dim Image A = 1 C] Dim Image A = 2 D] Dim Image A = 3	[2]	CO3	Understan d
xiv) Let A: $\mathbb{R}^3 \to \mathbb{R}^3$ is defined as $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 1 & 1 & 3 \end{bmatrix}$, then Basis of Image of A are	[2]	соз	Understan d
A] Image Basis = $ \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix} \right\} $ ([1])			
B] Image Basis = $ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} $ C] Image Basis = $ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix} $	·		
D] $Image\ Basis = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\3\\3 \end{bmatrix} \right\}$ xv) Let A: $\mathbb{R}^3 \to \mathbb{R}^3$ is any Linear Transformation and			Understan
Nullity of A= 3 then rank of the matrix A is A] $\rho(A) = 0$ B] $\rho(A) = 1$ C] $\rho(A) = 2$ D] $\rho(A) = 3$	[2]	CO3	d
Q2 Solve any two out of three			
a) Apply the Gram-Schmidt orthogonalization process to find orthogonal basis, for the set of the vectors $S = \left\{ \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right\}$	[5]	CO4	Apply
b) For the vectors $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} v_2 = \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$ $v_3 = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}$ Find I) $\langle V_2, V_3 \rangle$ II) $\operatorname{Proj}(V_2, V_1)$ III)) $ V_3 $ IV) Distance between $V_2 \&_1, V_3$	[5]	CO4	Remember

		T		
	c) Apply the Gram-Schmidt orthogonalization process to find orthogonal basis, for the set of the vectors = $\{v_1 = 1, v_2 = t, v_3 = t^2\}$ of polynomial space, with the inner product $\langle u, v \rangle = \int_0^1 uv dt$	[5]	CO4	Apply
Q.3	Solve any two out of three			
	a) Find all Eigen values of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$ and hence find Eigen Vector corresponding to Eigen Value $\lambda = 5$ hence determine algebraic multiplicity and geometric multiplicity of Eigen value $\lambda = 5$	[5]	CO5	Remember
	b) Does the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ is diagonalizable and if yes find diagonalization of it	[5]	CO5	Understan d
	c) Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & -1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$ and use it find A^{-1} if it exists.	[5]	CO5	Apply
Q.4	Solve any two out of three			
	a) Using orthogonal diagonalization find canonical form of the quadratic form $Q(x,y) = 25xy$	[5]	CO6	Understan d
	b) Find Symmetric matrix corresponding to given quadratic form and hence determine the signature and Index of the quadratic form $Q(x,y,z)=6x^2-4xy+4xz+3y^2-2yz+3z^2$	[5]	CO6	Remember
	c) Find Symmetric matrix corresponding to quadratic form $Q(x,y,z) = 2x^2 + 4xy + 2y^2 + z^2$ and hence determine the nature and rank of the quadratic form.	[5]	CO6	Remember