Total No. of Questions - [3]

Total No. of Printed Pages: 2

G.R. No.	

PAPER CODE V223-262 (ESE

May 2023 (ENDSEM) EXAM S.Y. (Mechanical) (AY 2022-23 SEMESTER - II) COURSE NAME: Applied Thermodynamics COURSE CODE: MEUA22202 (PATTERN 2020)

Time: [1Hr]

[Max. Marks: 30]

(*) Instructions to candidates:

- 1) Use of a scientific calculator is allowed
- 2) Use suitable data where ever required
- 3) All questions are compulsory

Question Description	Max.	CO	BT
	Marks	mapped	Level
a) Discuss how the steam pressure and velocity changes in the Impulse and Reaction turbines with the help of a schematic diagram.	[4]	[4]	[2]
b) For a single-stage impulse turbine operating at 2800 rpm mean blade diameter is 250 cm. The ratio of blade speed to steam speed (V1) is 0.45 and Vr1 = 0.85 Vr2. The steam mass flow rate is 7 kg/sec. The nozzle angle at inlet is 25° . Estimate	[6]	[4]	[3]
 Power Developed Blade efficiency Assume the component of whirl at the outlet as zero 		1	a L
OR		i.	
c) A nozzle is to be designed to expand steam at the rate of 0.15 kg/s from 600 kPa, 230°C to 101 kPa. Neglect inlet velocity of steam. For a nozzle efficiency of 0.92. Determine the exit area of the nozzle. (Density of air at the outlet is 1.21 kg/m ³) Use: 600 kPa: h1 =2896 kJ/kg 101 kPa: h2=2600kJ/kg	[6]	[4]	[3]
	 a) Discuss how the steam pressure and velocity changes in the Impulse and Reaction turbines with the help of a schematic diagram. b) For a single-stage impulse turbine operating at 2800 rpm mean blade diameter is 250 cm. The ratio of blade speed to steam speed (V1) is 0.45 and Vr1 = 0.85 Vr2. The steam mass flow rate is 7 kg/sec. The nozzle angle at inlet is 25 °. Estimate Power Developed Blade efficiency Assume the component of whirl at the outlet as zero OR c) A nozzle is to be designed to expand steam at the rate of 0.15 kg/s from 600 kPa, 230°C to 101 kPa. Neglect inlet velocity of steam. For a nozzle efficiency of 0.92. Determine the exit area of the nozzle. (Density of air at the outlet is 1.21 kg/m³) 	Marksa) Discuss how the steam pressure and velocity changes in the Impulse and Reaction turbines with the help of a schematic diagram.[4]b) For a single-stage impulse turbine operating at 2800 rpm mean blade diameter is 250 cm. The ratio of blade speed to steam speed (V1) is 0.45 and Vr1 = 0.85 Vr2. The steam mass flow rate is 7 kg/sec. The nozzle angle at inlet is 25 °.[6]Estimate 1. Power Developed 2. Blade efficiency Assume the component of whirl at the outlet as zero[6]c) A nozzle is to be designed to expand steam at the rate of 0.15 kg/s from 600 kPa, 230°C to 101 kPa. Neglect inlet velocity of steam. For a nozzle efficiency of 0.92. Determine the exit area of the nozzle. (Density of air at the outlet is 1.21 kg/m³)[6]	Marksmappeda) Discuss how the steam pressure and velocity changes in the Impulse and Reaction turbines with the help of a schematic diagram.[4][4]b) For a single-stage impulse turbine operating at 2800 rpm mean blade diameter is 250 cm. The ratio of blade speed to steam speed (V1) is 0.45 and Vr1 = 0.85 Vr2. The steam mass flow rate is 7 kg/sec. The nozzle angle at inlet is 25 °.[6][4]2. Blade efficiency Assume the component of whirl at the outlet as zero0R[6][4]c) A nozzle is to be designed to expand steam at the rate of 0.15 kg/s from 600 kPa, 230°C to 101 kPa. Neglect inlet velocity of steam. For a nozzle efficiency of 0.92. Determine the exit area of the nozzle. (Density of air at the outlet is 1.21 kg/m³)[6][4]

 a) For a particular application an air at a pressure of 10 bar is needed. Analyze work required in the single stage and 2 stage compression with schematic diagram. b) Following data relates to a performance test of a single acting 15cm (dia) x10cm (stroke). reciprocating compressor: Suction and delivery pressures 1 bar and 7 bar; suction and delivery temps 27C° and 190°C; mass of air delivered 1.8 kg/min; compressor speed 1200 rpm; Estimate volumetric efficiency, indicated power (R= 0.287 kJ/kg K, Neglect clearance volume, index pf expansion = 1.3) OR c) A single-acting 2-stage air compressor with perfect intercooling delivers 25 kg/min of air at 20 bar pressure. Air from the atm is sucked into the 	[6]	[5]	[3]
single acting 15cm (dia) x10cm (stroke). reciprocating compressor: Suction and delivery pressures 1 bar and 7 bar; suction and delivery temps 27C° and 190°C; mass of air delivered 1.8 kg/min; compressor speed 1200 rpm; Estimate volumetric efficiency, indicated power (R= 0.287 kJ/kg K, Neglect clearance volume, index pf expansion = 1.3) OR c) A single-acting 2-stage air compressor with perfect intercooling delivers 25 kg/min of air at 20			
reciprocating compressor: Suction and delivery pressures 1 bar and 7 bar; suction and delivery temps 27C° and 190°C; mass of air delivered 1.8 kg/min; compressor speed 1200 rpm; Estimate volumetric efficiency, indicated power (R= 0.287 kJ/kg K, Neglect clearance volume, index pf expansion = 1.3) OR c) A single-acting 2-stage air compressor with perfect intercooling delivers 25 kg/min of air at 20		[5]	[3]
OR c) A single-acting 2-stage air compressor with perfect intercooling delivers 25 kg/min of air at 20	[6]	[5]	[3]
perfect intercooling delivers 25 kg/min of air at 20	[6]	[5]	[3]
compressor at 1 bar and 27°C.			
The compression process follows pV ^{1.23} =C. Illustrate: i) Indicated power ii) Isothermal efficiency (Neglect clearance volume, R= 0.287 kJ/kg K)			
a) Elaborate with a neat sketch variation of the pressure and velocity impeller and diffuser of the centrifugal compressor.	[4]		[2]
b) Centrifugal air compressor working between 1 and 2.5 bar has Internal and external diameters of 300 mm and 600 mm respectively. The vane angle at the inlet and outlet are 30 ° and 45 ° respectively, if air enters at 15 m/sec. Calculate the speed of the impeller in RPM and Work done by the Compressor per kg of air. Assume flow velocity constant.	[6]	[6]	[3]
OR			
c) A centrifugal compressor with 80 % isentropic efficiency delivers 25 kg of air per minute at a pressure of 4 bar, at a speed of 13000 rpm. If the compressor receives air at 300 K and at a pressure of 1.01 bar. (Cp= 1.005 kJ/kg K) Calculate The actual temperature of the air at the exit.	[6]	[0]	[3]
	(Neglect clearance volume, R= 0.287 kJ/kg K) a) Elaborate with a neat sketch variation of the pressure and velocity impeller and diffuser of the centrifugal compressor. b) Centrifugal air compressor working between 1 and 2.5 bar has Internal and external diameters of 300 mm and 600 mm respectively. The vane angle at the inlet and outlet are 30 ° and 45 ° respectively, if air enters at 15 m/sec. Calculate the speed of the impeller in RPM and Work done by the Compressor per kg of air. Assume flow velocity constant.	(Neglect clearance volume, R= 0.287 kJ/kg K) [4] a) Elaborate with a neat sketch variation of the pressure and velocity impeller and diffuser of the centrifugal compressor. [4] b) Centrifugal air compressor working between 1 and 2.5 bar has Internal and external diameters of 300 mm and 600 mm respectively. The vane angle at the inlet and outlet are 30 ° and 45 ° respectively, if air enters at 15 m/sec. Calculate the speed of the impeller in RPM and Work done by the Compressor per kg of air. Assume flow velocity constant. [6] (Neglect clearance volume, R= 0.287 kJ/kg K) [6] (Neglect clearance volume, many state of the impeller in RPM and Work done by the Compressor per kg of air. Assume flow velocity constant. [6] (Neglect clearance volume, R= 0.287 kJ/kg K) [6] (Neglect clearance volume, R= 0.287 kJ/kg K) [6]	(Neglect clearance volume, R= 0.287 kJ/kg K) [4] [6] a) Elaborate with a neat sketch variation of the pressure and velocity impeller and diffuser of the centrifugal compressor. [6] [6] b) Centrifugal air compressor working between 1 and 2.5 bar has Internal and external diameters of 300 mm and 600 mm respectively. The vane angle at the inlet and outlet are 30 ° and 45 ° respectively, if air enters at 15 m/sec. Calculate the speed of the impeller in RPM and Work done by the Compressor per kg of air. Assume flow velocity constant. [6] [6] OR [6] [6] [6] (A centrifugal compressor with 80 % isentropic efficiency delivers 25 kg of air per minute at a pressure of 4 bar , at a speed of 13000 rpm. If the compressor receives air at 300 K and at a pressure of 1.01 bar. (Cp= 1.005 kJ/kg K) [6] [6]