$\mathcal{T}_{\mathsf{Otal}}$ No. of Questions – [3]

Total No. of Printed Pages: 2

G.R. No.	

PAPER CODE \ \ 223 - 269 (\$30)

May 2023 (ENDSEM) EXAM

S.Y. (MECHANICAL) (AY 2022-23 SEMESTER - II)

COURSE NAME: Strength of Materials

Course code: MEUA22204

(PATTERN 2020)

Time: [1Hr]

[Max. Marks: 30]

- (*) Instructions to candidates:
- 1) Use of scientific calculator is allowed
- 2) Use suitable data where ever required
- 3) All questions are compulsory

uestion	Question Description	Max.	СО	BT
) .		Marks	mapped	Level
.1	a) Discuss with the figure the variation of bending	[4]	[4]	[2]
	stress for a rectangular cross-section of the beam.			
	b) A 200 mm × 400 mm I' section beam is to be used	[6]	[4]	[3]
	as a simply supported beam of 10 m span. The web			
thickness is 10 mm and the flang	thickness is 10 mm and the flanges are 20 mm thick.			
	Estimate maximum stress induced due to bending.			
	OR			
	c) Estimate maximum shear stress induced and shear stress at a distance of 30 mm above the	[6]	[4]	[3]
	neutral axis for a rectangular beam of 100 mm wide			
	and 250 mm deep when subjected to a shear force of 50 kN.			
b) A simply supported to a point load of	a) Explain the boundary conditions used to analyze	[4]	[5]	[2]
	the deflection of the cantilever beam and simply supported beam.			. ,
	b) A simply supported beam of length 6 m subjected	[6]	[5]	[3]
	to a point load of 50 kN at a distance of 4 m from left			
	support. Estimate the deflection at the load point.			10
	Use the Macaulay method. Take E = 200 GPa, I =			
	7.33×10 ⁷ mm ⁴ .			
	OR			

	c) A simply supported beam of length 8 m subjected to two point loads as shown in Figure 1 . Estimate the deflection under 64 kN load. Use the Macaulay method. Take $E = 210$ GPa, $I = 180 \times 10^6$ mm ⁴ .	[6]	[5]	[3]
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	The state of the s			
to torsion.	a) Discuss the mechanical parts which are subjected to torsion.	[4]	[6]	[2]
	_====	[6]	[6]	[3]
	OR	11.17.40		
	c) Derive Euler's formula for buckling load for a column with both hinged ends.	[6]	[6]	[3]