Total	Nο	οf	Ouestions -	[4]
± 0 121	INO.	$\mathbf{o}_{\mathbf{I}}$	Officerorie	

PRN. No.

Total No. of Printed Pages: [2]

PAPER CODE U114-303A (Balklog)

DECEMBER 2024 (Backlog) EXAM Sem-I F.Y. B. Tech. (Common) (PATTERN 2020)

COURSE NAME: Basic Electrical Engineering

COURSE CODE: ET10203A

Time: [2 Hrs.]

[Max. Marks: 60]

- (*) Instructions to candidates:
- 1) Use of scientific calculator is allowed
- 2) Use suitable data where ever required
- 3) All questions are compulsory. Solve any THREE sub questions from EACH question

Que. No.	Question Description	Max. Marks	CO mapp	BT Level
			ed	ļ
Q1.	Solve any three sub questions from the following			
	A) Calculate the current in 10 Ω in the circuit as shown in figure 1 using	[5]	CO1	Apply
	Norton's theorem.			
	50 80 W 100 6V			
: <u>.</u>		5		
	Figure 1			
	B) Find the voltage drop across 4 Ω resistance in the circuit as shown in	[5]	CO1	Apply
•	figure 2 using Thevenin's theorem.]
, .	2Ω 3Ω	1	· .	
,				
	12 V → 6 Ω ≥ 4 Ω ≥			
	\\ \T\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
	Figure 2			
	C) Calculate power consumed by 4 Ω resistance in the circuit as shown in figure 2 using Norton's theorem.	[5]	CO1	Apply
	D) State and explain Kirchhoff's Current law (KCL) and Kirchhoff's voltage law	[5]	CO1	Under
Į	(KVL) along with sign conventions used.			stand
	WAT GOING MEN SIGN CONTROLLE SEE THE	ļ .		

Q2	Solve any three sub questions from the following	Ţ.		1
	A) A resistance of 20 Ω , inductance of 0.2 H and capacitance of 150 up are	l rea		
	connected in series and are fed by a 230V, 50Hz single-phase ac supply Find.		CO2	Apply
	inductive and capacitive reactance ii) impedance and admittance of circuit	-		
	and my power factor of circuit.			
٠.	B) A series RLC circuit undergoing resonance has R=5 Ω , L= 0.2 H and C= 50	[5]	CO2	Annlu
	μr. The applied voltage to circuit is 200 V. Calculate: - i) resonant frequency	روا	002	Apply
	ii) current at resonance and iii) voltage across inductance at resonance			
-	C) A circuit consists of resistance of 40, inductance of 0.5H and a veriable	[5]	CO2	A l
	capacitance in series across 100V, 50Hz supply. Calculate: i) the value of		1 002	Apply
	capacitance to produce resonance ii) current flowing through the circuit and	, •		
	inj voltage across capacitance at resonance.	• •	}	
	D) Derive an expression for current drawn and the average power consumed	[5]	CO2	Under
	by a circuit consisting of a pure capacitor of capacitance 'C' connected across	[J]	102	
	an ac source of $v = V_m \sin \omega t$.	·	İ	stand
Ó2	Col		-	
Q3.	Solve any three sub questions from the following	•		-
•	A) At full-load, the copper and iron losses in a 100 kVA transformer are each	[5]	CO3	An-1
	equal to 2.5 kW. Find the efficiency at a load of 65 kVA, power factor 0.8	[2]	1.	Apply
	B) A 40 kVA, 6600V/230V, 50 Hz, single-phase transformer has 30 turns on	 Fr=1		ļ <u></u>
:	its secondary winding. Calculate the number of turns of the primary winding.	[5]	CO3	Apply
	Also calculate the primary and secondary winding full load currents.		,	
	C) A 55 kVA, 50 Hz single- phase transformer has primary winding of 460	· ·		:
	turns and secondary winding of 460°	[5]	CO3	Apply
	turns and secondary winding of 160 turns. The input side of the transformer	• • •		
,	is supplied with 2500 V. Calculate: i) Secondary voltage ii) primary and	,		
·	secondary full load current and iii) maximum flux in the core.			·
	D) A 45 kVA, 6000/200 V, single- phase transformer has primary and	[5]	CO3	Apply
	secondary resistance of 8 \O and 0.01 O respectively. The leakage reset-	[-]	003	Yhhià
	referred to primary side is 30 Ω . Determine the percentage voltage			
	regulation at full-load, 0.6 power factor lagging.			•
24.	Solve any three cub succeious 6			
<u> </u>	Solve any three sub questions from the following			
	A) Draw a neat phasor diagram for a three-phase balanced star-connected	[5]	CO4	Apply
	resistive load in each phase across a symmetrical three-phase ac supply and			Apply
	hence derive the relationship between the line current and phase current.			
	Also write relation between line voltage and phase voltage.			• .
	B) Calculate the phase and line currents in a balanced delta- connected load	[5]	CO4	Apply
	taking 75 kW at a power factor of 0.8 lagging from a 3-phase, 440 V supply			·
	Also calculate the total reactive power in the circuit.			•
	C) A 440-V, DC motor is used to drive an irrigation nump. The officiency of	[5]	COA	Λ
.	the motor is 85% and that of the pump is 66%. The nump is required to the	[5]	CO4	Apply
	240 kilo- litres of water per hour to a height of 30 meters. Calculate the	.		
	current taken by the motor. Take 'g' as 9.81 m/s'. Assume 1 litre = 1kg of	<i>.</i> .		
	water.		1	
	D) An electric motor is driving a train weighing 100 thousand kilograms upon	[5]	CO4	Δnnly
	an inclined track of 1 in 100 at a speed of 60 km/ hour. The tractive 1			Apply
	resistance is 10 kg per 1000 kg of its weight. If the motor operates on 11 kg			
	and the current taken by the motor assuming the overall efficiency of the			
1	system as 70%. Take gravitational acceleration 'g' as 9.81 m/s ² .			•