Total No. of Printed Pages: [2]

PAPER CODE

U114-3103 (Backles)

PRN. No.

DECEMBER 2024 (Backlog) EXAM Sem-I

## F.Y. (INFORMATION TECHNOLOGY)

(PATTERN 2023)

COURSE NAME: DIGITAL ELECTRONICS AND LOGIC DESIGN COURSE CODE: IT11235

Time: [2Hr]

[Max. Marks: 60]

Instructions to candidates:

- 1) Use of scientific calculator is allowed
- 2) Use suitable data where ever required
- 3) All questions are compulsory. Solve any THREE sub questions from EACH question

| Que.<br>No. | Question Description                                                                                                                         | Max.<br>Marks | CO<br>mapped | BT<br>Level |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|-------------|
| Q1.         | Solve any three sub questions from the following                                                                                             |               |              |             |
|             | A) i) Binary (11101101) to Decimal ii) Hex (8C8F) to Octal                                                                                   | [5]           | [1]          | 3           |
|             | B) Simplify the following logic function using Quine-McCluskey minimization technique. $Y = f(A, B, C, D) = \Sigma m (0,2,3,5,7,9,10,12,13)$ | [5]           | [1]          | 5           |
|             | C) Simplify the following logic function using K-Map minimization technique. $Y = f(A, B, C, D) = \Sigma m (0,2,4,6,7,9,10,11,13,15)$        | [5]           | [1]          |             |
| -           | D) i) Convert Hexadecimal (125) to Octal. ii) Convert Binary (11101011) to Decimal.                                                          | [5]           | [1]          | 3           |
| Q2.         | Solve any three sub questions from the following                                                                                             |               |              |             |
|             | A) Design of BCD Adder using 4-bit Binary Adder.                                                                                             | [5]           | [2]          | 5           |
|             | B) Design 4 bit odd parity generator using K-map.                                                                                            | [5]           | [2]          | 5`          |
|             | C) Design full adder. Represent the truth table, K-map simplification and circuit diagram.                                                   | [5]           | [2]          | 5           |
|             | D) Design the given expression using 8:1 multiplexer using MSB method $F(A, B, C, D) = \Sigma m (1,5,7,9,10,11,13,14,15)$                    | [5]           | [2]          | 5           |

| Q3.                                               | Solve any three sub questions from the following                                                       |     |     |    |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----|-----|----|
|                                                   | A) Convert J-K to T flip-flop. Represent the truth table,<br>K-map simplification and circuit diagram. | [5] | [3] | 3  |
|                                                   | B) Draw and explain working of Master Slave JK flip flop.                                              | [5] | [3] | 3  |
| <del>                                      </del> | C) Draw and explain significance of D & T flip flop.                                                   | [5] | [3] | 3  |
|                                                   | D) Demonstrate the working of SISO and SIPO shift registers.                                           | [5] | [3] | 3  |
| Q4.                                               | Solve any three sub questions from the following                                                       |     |     |    |
|                                                   | A) Design Mod 92 counter using IC 7490.                                                                | [5] | [4] | 5  |
|                                                   | B) Elaborate the structure of 4-bit Ring with suitable example.                                        | [5] | [4] | 4  |
|                                                   | C) Design sequence generator for 10110.                                                                | [5] | [4] | 5. |
|                                                   | D) Draw and explain IC 7490 in detail.                                                                 | [5] | [4] | 4  |
|                                                   |                                                                                                        |     |     |    |

Note: [BT Level – 1. Remember 2. Understand 3. Apply 4. Analyze 5. Evaluate 5. Cruste]