| Total No. of Questions - [4 | |-----------------------------| |-----------------------------| Total No. of Printed Pages: [2] | PRN. | No. | • | | |------|-----|---|--| | | | | | PAPER CODE U114-304CS Backley DECEMBER 2024 (Backlog) EXAM SEMI-I ## F.Y. B.Tech (PATTERN 2023) COURSE NAME: Physics COURSE CODE: BS10234CS Time: [2Hr] [Max. Marks: 60] - (*) Instructions to candidates: - 1) Use of scientific calculator is allowed - 2) Use suitable data where ever required - 3) All questions are compulsory. Solve any THREE sub questions from each question. | Que.
No. | Question Description | Max.
Marks | CO
mapped | BT
Level | |-------------|--|---------------|--------------|-------------| | Q1. | Solve any three sub questions from the following | | | | | | A) Calculate the probability of finding an electron at energy 0.3 eV above and 0.3 eV below Fermi energy at 400 K. Given: $k=8.6 \times 10^{-5}$ eV/K. | [5] | CO1 | Apply | | | B) Illustrate Fermi-Dirac distribution function and describe its variation at T=0K and T>0K. | [5] | CO1 | Understand | | , | C) If the reverse saturation current $I0 = 10$ pA for a Silicon diode, find the forward current at T = 300K for an applied voltage of 0.5V and 0.6V. | [5] | CO1 | Apply | | | D) Using energy level diagram, explain working of P-N junction diode in forward and reverse bias. | [5] | CO1 . | Understand | | Q2. | Solve any three sub questions from the following | | | | | | A) A glass clad fiber is made with core glass of refractive index 1.52. The cladding is doped to give a fractional refractive index of 0.0006. Calculate (i) the cladding index (ii) the internal critical angle (iii) the numerical aperture (NA) and (iv) the maximum acceptance angle. | [5] | CO2 | Apply | | | B) Illustrate about dispersion occurs in optical fiber. Also sketch the schematic diagram which showing dispersion for Multi-mode step index fiber. | [5] | CO2 | Understand | | | C) Illustrate construction of Optical fiber with suitable diagram. Explain the terms – Refractive Index and Numerical Aperture. | [5] | CO2 | Understand | | | D) If the spectral width $\Delta\lambda$ =158 Å at λ = 6500 Å for a red LED and for the optical fiber, the material dispersion. ($\lambda 2 \frac{d2n1}{d\lambda 2}$) = 0.025. What is the material dispersion for an optical fiber of length L = 1 km. Calculate the material dispersion if a laser with the same wavelength, but $\Delta\lambda$ = 1 Å, is used. Calculate B_{max} . | [5] | CO2 | Apply | | Solve any three sub questions from the following | | | | |--|---|---|---| | A) Compare RTD and thermistor with the help of various | [5] | CO3 | Understand | | | [5] | CO3 | Apply | | | [-] | | | | 1) Accuracy ii) i coision iii) serio, iii) | rr1 | CO3 | Understand | | C) Illustrate working principle of Hall sensor and list out its | [5] | 003 | Officerstand | | applications. | | | | | D) If the resistance of a P _t resistor with $R_0 = 100\Omega$ at 0°C, what is its | [5] | CO3 | Apply | | resistance at -50°C? Given A = 3.9083×10^{-3} /°C and B = -5.775×10^{-7} | | | | | /°C². What is its sensitivity and temperature coefficient at -50°C? | | | | | | | | | | A) Calculate the de Broglie wavelength of an electron when | [5] | CO4 | Apply | | accelerated through a potential difference of 10,000 volts. | - , | | | | B) An infinite square well has a width of 1Å. What is the fractional | [5] | CO4 | Apply | | change in the lowest two permissible energies of an electron in this | | ĺ | | | | | | | | C) Derive the expression for Schrodinger's Time Independent Wave | [5] | CO4 | Understand | | | | | | | | [5] | CO4 | Understand | | D) Explain Heisenberg's Uncertainty Principle. | [2] | 507 | O , , a c , b c a , i a | | | | | | | | A) Compare RTD and thermistor with the help of various parameters. B) Define following characteristics of sensors: i) Accuracy ii) Precision iii) Sensitivity iv) Drift v) Resolution C) Illustrate working principle of Hall sensor and list out its applications. D) If the resistance of a Pt resistor with Ro = 100Ω at 0°C, what is its resistance at -50°C? Given A = 3.9083×10⁻³ /°C and B = -5.775×10⁻⁷ | A) Compare RTD and thermistor with the help of various parameters. B) Define following characteristics of sensors: i) Accuracy ii) Precision iii) Sensitivity iv) Drift v) Resolution C) Illustrate working principle of Hall sensor and list out its applications. D) If the resistance of a Pt resistor with Ro = 100Ω at 0°C, what is its resistance at -50°C? Given A = 3.9083×10⁻³ /°C and B = -5.775×10⁻² /°C². What is its sensitivity and temperature coefficient at -50°C? Solve any three sub questions from the following A) Calculate the de Broglie wavelength of an electron when accelerated through a potential difference of 10,000 volts. B) An infinite square well has a width of 1Å. What is the fractional change in the lowest two permissible energies of an electron in this well if the width is increased to 2Å? C) Derive the expression for Schrodinger's Time Independent Wave Equation. | A) Compare RTD and thermistor with the help of various parameters. B) Define following characteristics of sensors: i) Accuracy ii) Precision iii) Sensitivity iv) Drift v) Resolution C) Illustrate working principle of Hall sensor and list out its applications. D) If the resistance of a Pt resistor with Ro = 100Ω at 0°C, what is its resistance at -50°C? Given A = 3.9083×10⁻³ /°C and B = -5.775×10⁻⁷ /°C². What is its sensitivity and temperature coefficient at -50°C? Solve any three sub questions from the following A) Calculate the de Broglie wavelength of an electron when accelerated through a potential difference of 10,000 volts. B) An infinite square well has a width of 1Å. What is the fractional change in the lowest two permissible energies of an electron in this well if the width is increased to 2Å? C) Derive the expression for Schrodinger's Time Independent Wave Equation. |