Total No. of Questions - [2	Total	No.	of	Questions -	[2
-----------------------------	-------	-----	----	-------------	----

G.R. No.	

Total No. of Printed Pages: 02

PAPER CODE U124-354

March 2024 (INSEM) EXAM F.Y. B. TECH. COMPUTER SCIENCE & ENGG (AIML) (SEMESTER - II)

COURSE NAME: FUNDAMENTALS OF DATA STRUCTURES

COURSE CODE: CM12234

(PATTERN 2023)

Time: [40 min]

[Max. Marks: 20]

Instructions to candidates:

- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) Solve any two sub questions from Question 1 and 2

Question	Question Description	N/ - 1	00	
No.	Essential Description	Marks	СО	Blooms
1 - 101			mapped	Taxonomy
0.1			-	Level
Q.1	a) Consider the following sparse matrix. Represent	[5]	1	3
	into sparse triplet form and then convert it into simple		•	
1	transpose form.			
	0 4 0 5			
	0 0 3 6			
	1000			
	h) Consider a two dimensional			
	b) Consider a two dimensional array A[120][15]	[5]	1	3
	with base address 1000 and size of each element is 2			
	bytes in memory. Find the address of A[18][4] using			
	row major order.			
]				
	c) Justify the "Asymptotic Notation help in	[5]	1	3
ŀ	understanding the scalability of an algorithm". Prove	[-]	•	3
	that $I(n) = O(g(n))$ with an example.			
Q2	a) Design an algorithm to insert and delete an element	[5]	2	3
	into stack with suitable example.		_	· ·
	-			
]	b) Convert the infix string ((A+B) *(C-D))/(E+F) into	(5)		
	postfix string with stack. Show the content of stack in	[5]	2	3
	each step.	ļ		
		1	!	

PUSH and POP operations for the following diagrammatically. PUSH 36 PUSH 46 POP POP POP PUSH 100.	[5]	2 3	3
---	-----	-----	---

Note: [BT Level - 1. Remember 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create]