Total No. of Questions - [2]

Total No. of Printed Pages: 02

G.R. No.				
G.I.C. 110.	,		PAPER CODE	1 ula / aa /
		,		V124-324

MARCH 2024 (INSEM) EXAM F.Y.B. TECH. - CIVIL ENGINEERING (SEMESTER - II)

COURSE NAME: MECHANICS OF SOLIDS

COURSE CODE: CV12234

(PATTERN 2023)

Time: [40 Minutes]

[Max. Marks: 20]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) Solve any two sub questions from Question 1 and 2

Question	Question Description	Marks	100	T.,
No.		Marks	CO	Blooms
			mapped	Taxonomy
Q.1	a) Shear Force Diagram for a signature			Level
ζ	a) Shear Force Diagram for a simply supported beam is shown below. Draw the loading diagram. AC=CD=BD= 2 m	[5]	CO 1	Apply
·	+20 kN			
	A C D B			
	-20 kN Shear Force Diagram	ļ		
	b) A 2 m long cantilever beam as shown in below figure is subjected to loads as shown. Draw bending moment diagram.	5]	CO1	Apply
	10 kN 5 kN/m C	·		
	AB=1 m and BC=1 m			

	c) A simply supported beam is subjected to the loads as shown in the figure. Draw bending moment diagram. AC= 2 m, CB=4 m	[5]	CO1	Apply
	5 kN-m 3 kN/m B			
Q2	a) A rectangular beam of 300 mm wide and 400 mm deep is simply supported over a span of 4 m. What uniformly distributed load per meter length will be carried by the beam if the bending stress is not to exceed 10 M Pa.	[5]	CO 2	Apply
	b) A timber beam of rectangular section is to support a load of 20 kN/m over a span of 3.6 m when the beam is simply supported. If the depth of the section is twice the breadth and the bending stress is not exceed 7 N/mm ² , find the dimension of the cross section.	[5]	CO 2	Apply
	c) A wooden beam 100 mm wide and 150 mm deep is simply supported over 4 m span. If the shear force at a section is 4500 N, find the shear stress at 50 mm above the neutral axis.	[5]	CO 2	Apply