Total no. Of	Questions -	[2]
--------------	-------------	-----

G.R. No.

Total No. of Printed Pages: 1

PAPER CODE

V124-363

MARCH 2024 (INSEM) EXAM

F.Y.B. TECH. -CSE-DATA SCIENCE- (SEMESTER - II)

COURSE NAME: Problem Solving and Programming COURSE CODE: CD12233

(PATTERN 2023)

Time: [40 min]

[Max. Marks: 20]

- (*) Instructions to candidates:
- Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) Solve any two sub questions from Question 1 and 2

Question	Question Description	34.1	T	T
No.		Marks	CO	Blooms
			mapped	Taxonomy
Q.1	a) Discuss any two distinct it is			Level
	a) Discuss any two distinguishing features of each: Algorithm, Pseudocode, and flowchart	[5]	CO1	Understand
	b) Draw a flowchart and write an algorithm and pseudocode to generate first n Fibonacci terms	[5]	CO1	Apply
02	c) Draw a flowchart and write an algorithm and pseudocode to transpose a matrix	[5]	CO1	Apply
Q2	a) Develop a program to multiply two matrices:	[5]	CO2	Apply
	A = [[-2,3,5,-1], [0,3,10,-7], [11,0,0,-8]] and	r. 1	002	Apply
	B = [[2,1], [-1,1], [0,4], [8,0]]			
	b) Develop a python program to display the output as:		COO	
•	****	[5]	CO2	Apply
	. *			
	*		,	

	*			
	*		1	

	c) Develop a python function to transpose the below matrix.	[5]	CO2	Apply
	$A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{bmatrix}.$			

