J 124, -		-35 10124-36)				
covery	PRN No.	ا دو عاری ۱ ا	POT ICESE	Total No. of Printe PAPER	d Pages: 2	7
				CODE		

May 2024 (ENDSEM) EXAM

F.Y. B. TECH (SEMESTER - II)

COURSE NAME:

Linear Algebra Branch: Common

COURSE CODE:

BS10231

(PATTERN 2023)

Time: [1Hr. 30 Min]

[Max. Marks: 40]

- (*) Instructions to candidates:
- 1) Figures to the right indicate full marks.
- 2) Use of scientific calculator is allowed
- 3) Use suitable data wherever required
- 4) All questions are compulsory. Solve any one sub question from Question 3 and any two sub questions each from Questions 4,5 and 6 respectively.

Q.	Question Description	Max.	co	ВТ
No.		Mark	mapp	Level
		s	ed	
Q.1	a) Find solution of Non homogenous equations	[2]	CO1	Under
	y + 2z = 2			stand
	x + 3y = 3			
	x - 6z = -3			
Q.2	a) Find Column space basis of the matrix	[2]	CO2	Under
	$A = \begin{bmatrix} 0 & 0 & 1 & 4 \\ 0 & 1 & 1 & 1 \\ 0 & 2 & 2 & 6 \end{bmatrix}$			stand
	$A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 0 & 2 & 3 & 6 \end{bmatrix}$			
	10 2 3 01			
Q.3	6x - 3y + 9z	[6]	CO3	Reme
	a) Does the Linear Transformation $T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 6x - 3y + 9z \\ 2x - y + 3z \\ 2x - y + 3z \end{bmatrix}$	[0]	003	mber
	- [- 0]			mber
	Regular? Find Basis and dimensions of Kernel of Linear			
	Transformation.			,
	11.57			
	b) Verify whether the Linear Transformation	[6]	CO3	Reme
	$\left[\frac{2}{3}x + \frac{2}{3}y + \frac{1}{3}z \right]$	1-3		mber
	$T \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} \frac{1}{2}x - \frac{1}{2}y + \frac{2}{2}z \end{vmatrix}$ is orthogonal? Also determine			
	$T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{2}{3}x + \frac{2}{3}y + \frac{1}{3}z \\ \frac{2}{3}x - \frac{1}{3}y + \frac{2}{3}z \\ -\frac{1}{3}x + \frac{2}{3}y + \frac{2}{3}z \end{bmatrix}$ is orthogonal? Also determine			
:				
	basis and dimensions of Image of Linear Transform.			
Q.4	a) Apply the Gram-Schmidt orthogonalization process to	[5]	CO4	Apply
	find orthogonal basis, for the set of the vectors			
	$S = \left\{ \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$			
	$\begin{pmatrix} 3-\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\2\\1 \end{pmatrix}$			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			

	b) For the vectors $v_1=t$, $v_2=t^2$, $v_3=t^3$ with the inner product $\langle v_i v_j \rangle = \int_{-1}^1 v_i v_j dt$ Find $\langle v_1 v_2 \rangle$ $\langle v_1 v_2 \rangle$ $\langle v_1 v_3 \rangle$ Projection of $\langle v_2 v_3 \rangle$	[5]	CO4	Apply
	c) Apply the Gram-Schmidt orthogonalization process to find orthogonal basis, for the set of the vectors $S = \{v_1 = 1 + t, v_2 = t + t^2\}$ of polynomial space,	[5]	CO4	Apply
	with the inner product $\langle u,v\rangle=\int_0^1 uvdt$			
Q.5	a) Find all Eigen values of the matrix $A = \begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$ and hence find Eigen Vector corresponding to maximum	[5]	CO5	Under stand
	Eigen Value of the matrix A hence determine algebraic multiplicity and geometric multiplicity of maximum Eigen value.			
	b) For the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}$ find diagonal matrix D and	[5]	CO5	Under stand
	nonsingular matrix P so that $A = PDP^{-1}$	[5]		
	c) Verify Cayley Hamilton theorem for the matrix	[O]	CO5	Under stand
	$A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & -1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$ and use it find A^{-1} if it exists.			
Q.6)	a) Construct the analytic function f(z) of which the real part is $e^x cosy$	[5]	CO6	Apply
	.Also find f(z) in terms of z.			
	b) If $w = \phi + i\Psi$ represent the complex potential for an electric field and $\Psi = x^2 - y^2$ then determine the harmonic function ϕ . Also, express w in terms of z.	[5]	CO6	Apply
	c) Evaluate $\oint_C \oint \frac{\sin 2z}{\left(z - \frac{\pi}{2}\right)^2} dz$ where C is the Ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$	[5]	CO6	Apply