PRN No.

PAPER CODE

U225-233(ES

(AY:2024-25) May 2025 (ENDSEM) EXAM SY B.TECH (SEMESTER - II)

COURSE NAME:

Branch: Computer Engineering

COURSE CODE:

CS22233

Theory of Componutation

SY (Pattern 2023)

Time: [1Hr 30 Min]

[Max. Marks: 40]

Instructions to candidates:

- 1) Figures to the right indicate full marks. Use of scientific calculator is allowed
- 2) Use suitable data wherever required
- 3) All questions are compulsory. Solve any two sub question each from Questions 1, 2,3 and 4

Q. No.	Question Description	Max.	CO	BT Level
		Marks	mapped	
Q.1	a)Build the corresponding DFA for following NFA, where	[5]	1	Apply
	$M = (\{q0, Q1\}, \{0,1\}, \partial, q0, \{q1\}) \text{ be an NFA with } \partial(q0,0) = \{q1\}$			
	$\partial(q0,1) = \{q0,q1\}, \ \partial(q1,1) = \{q0,q1\}$			
,	b)Build a Moore machine for 1's complement of binary	[5]	1 *	Apply
	number and Mealy machine for 2's complement of a given	,		
	binary number.			
	c)i)Design a Deterministic finite automata for regular	151	i <u>.</u>	
	expression (111+000)*0	[5]	1	Apply
	ii)Construct a regular expression over $\sum 0.1$ for all strings that			
	do not end with 01.			
Q2	a)Simplify the following grammar	[5]	2	Analyze
	S→AB	[0]		/ / / / / / / / / / / / / / / / / / /
	A→aAA €			
	B→bBB €			
	b)Simplify the following grammar in CNF form	[5]	2	Analyze
	S→Aba			
	S→aab			
	B→Ac			
	c) Check whether the following grammar is Ambiguous or not	[5]	2	Analyze
	by developing parse tree of any string belongs to the same . S→aB ab			
	S→aB ab A→aAB a			,
	A→aAb a B→ABb b			
	חוממעיים	L		

Q3	a) Construct a PDA to accept the language of odd-length palindromes over {a,b} by null stack. Describe how the PDA uses the stack to verify the palindrome structure.	[5]	3	Apply
	b)Construct a Push Down Automata accepting balanced parenthesis involving any 2 types of parenthesis.ex.{[]}	[5]	3	Apply
	c)Solve using instantaneous description method for the PDA that accepts L= {an bn ,n>0} Demonstrate how the stack changes at each step for the input string "aabb"	[5]	3	Apply
Q4	a)Design a Turing Machine that accepts strings over {a,b} with an even number of a's. The machine should ignore bs and halt only when the condition is met.	[5]		Apply
	b) Design a Turing Machine that computes the sum of two unary numbers separated by a C, e.g., input 000C000 should produce 000000. Explain the transitions and logic used.	[5]	4	Apply
	c)Design a Turing Machine for 1's complement considering any suitable string.	[5]	4	Apply